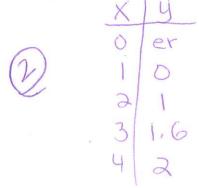
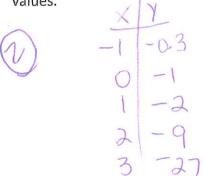


2. Simplify
$$\left(\frac{3y^9}{48x^{-4}y}\right)^{-\frac{1}{4}}$$

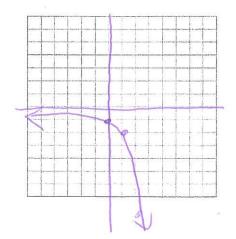
$$3 \left(\frac{x^{4}y^{8}}{16} \right)^{-\frac{1}{4}} = \frac{10^{\frac{1}{4}}}{xy^{2}} = \boxed{\frac{2}{xy^{2}}}$$

3. Simplify
$$\sqrt{x^5b} \cdot \sqrt{x^{-2}b^3}$$


4. Express
$$\sqrt[3]{27xy^2}$$
 using rational exponents.


5. Express
$$a^{\frac{1}{5}}(7a^3b)^{\frac{1}{2}}$$
 using only one type of radical.

$$(x) \frac{a^{3/6} (7036)^{5/6}}{\sqrt[10]{a^2 + 5a^{15}b^5}} = \sqrt[10]{1680707b^5} = |a| \sqrt[10]{1680707b^5}$$


6. Graph
$$y \ge \log_2 x$$
. Show your table of values including at least 5 values.

7. Graph $y = -3^x$. Show your table of values including at least 5 values.

8. Write $36^{\frac{1}{2}} = 6$ in logarithmic form.

9. Write $log_7 343 = 3$ in exponential form.

10. Given that log 7 = 0.8450 and log 3 = 0.4771 find log 0.063. SHOW YOUR WORK, do not just plug into calc.

Solve each equation or inequality. Round answers to the nearest ten-thousandth if necessary.

11.
$$\log_5 4 + \frac{1}{4} \log_5 81 = \log_5 (4x - 4)$$

12.
$$\log_9(x-1) + \log_9(x-2) = \log_9 6$$

$$\log_{5} 4(81)^{4} = \log_{5}(4x-4)$$

$$4(3) = 4x-4$$

$$16 = 4x$$

$$4 = 4$$

$$\begin{array}{l}
\log_{9}(x-1)(x-2) = \log_{9} b \\
X^{2} - 3x + 2 = b \\
x^{2} - 3x - 4 = 0 \\
(x - 4)(x+1) = 0 \\
(x = 4) + X
\end{array}$$

13.
$$\log_3 x - \frac{1}{2} \log_3 25 = 2 \log_3 10$$

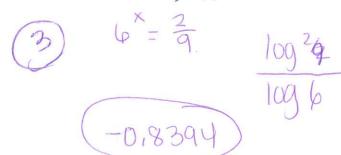
14.
$$\log(8x) = \log(2x + 18)$$

$$\log_3 \frac{x}{5} = \log_3 100$$

$$8x = 2x + 18$$

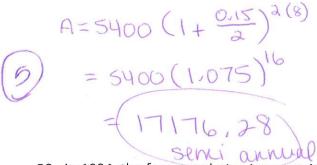
 $6x = 18$

$$\frac{x}{5} = 100$$
(x=500)


15.
$$2^{2x} \ge 5^{x-3}$$

16.
$$4.1e^{0.5x} = 2e^{x-5}$$

 $2.05 e^{0.5x} = e^{x-5}$


2x4n2=x4n5-34n5 2×4m2-×195≥ -355

$$\ln 2.05 + 0.5x = x - 5$$

 $\ln 2.05 + 5 = -0.5x$

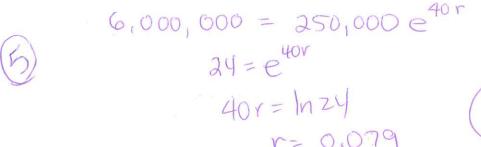
$$e^{-1.8x} > 7.07$$
 $-1.8x > \ln 7.07$
 $\times 4 - 1.0826$

19. Compare an investment of \$5400 earning 15% interest for 8 years when it is compounded continuously versus one that is compounded semi-annually.

$$A = 5400 e^{0.15(8)}$$

$$= (17,928.63)$$
Continuous -> more \$152.35

20. In 1994, the frog population in a certain area was 546. The number of frogs decreases exponentially at a rate of 2% per year. Predict the population in 2013.


$$N = 546 (1-0.02)$$
= 372 brogs

21. What interest rate is required for an investment with continuously compounded interest to double in 5 years?

$$5 = \frac{\ln 2}{5} = 0.139$$

$$13.9\%$$

22. If you won \$250,000 in the lottery and you wanted that to accumulate to \$6 million for your retirement in 40 years what average annual investment rate would be necessary for you to invest at?

1/20

23. The data gives the number of bacteria, in millions, found in a certain culture.

Time (hours)	0	1	2	3	4	
Bacteria	48	26	15	8	5	(-

a. Find an exponential function that models the data.

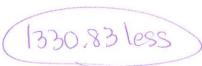
b. Write the equation from part a in terms of base e.

c. Use the model to estimate the <u>half-time</u> for the culture.

$$24 = 46.7906 e^{-0.5702X}$$

 $10 = 0.5129 = -0.5702X$

(x = 1, 1709 hours


Extra Credit

A. Solve $3^{x-3} \ge 2\sqrt[4]{4^{x-1}}$

(x-3)ln3 Z ln2+ 4 ln4 x ln3-3ln3 Z ln2+ 4 m4-4 ln4 x ln3-4 ln4 Z ln2+3ln3-4 ln4 $\times (\ln 3 - \frac{1}{4} \ln 4) \ge \ln 2 + 3 \ln 3 - \frac{1}{4} \ln 4$ $\times = 4,8434$

B. Taylor wishes to invest enough money now in order to have \$100,000 in twenty years. How much less can she invest at 10% interest in an account in which the interest rate is compounded continuously rather than in one at the same rate that is compounded annually?

C. A certain bacteria will triple in 6 hours. If the final count is 8 times the original count, how much time has passed.

