Midterm Review

Name ____Hour ____

Chapter 1 TEST REVIEW

1. Find the value of each expression.

a.
$$4(12-4^2)$$

b.
$$12 - [20 - 2(6^2 \div 3 \times 2^2)]$$

c.
$$[4(5-3)-2(4-8)] \div 16$$

d.
$$\frac{-8(13-37)}{6}$$

2. Evaluate each expression if $a = \frac{3}{4}$, b = (-8), c = (-2), d=3, and $e=\frac{1}{3}$.

a.
$$ab^2 - d$$

b.
$$\frac{d(b-c)}{ac}$$

c.
$$-b[a + (c - d)^2]$$

3. The formula $F = \frac{9}{5}C + 32$ gives the temperature in degrees Fahrenheit for a given temperature in degrees Celsius. That is the temperature in degrees Fahrenheit when the temperature is (-40) degrees Celcius?

- 4. Name the sets of numbers to which each number belongs.
 - a. $\frac{6}{7}$
 - b. 0
 - C. $\frac{\sqrt{36}}{9}$
 - d. 3
- 5. Simplify each expression.
 - a. 8(3a-b)+4(2b-a)
 - b. $12(\frac{a}{3} \frac{b}{4})$
 - c. 2.5m(12 8.5)

- 6. Write an algebraic expression to represent each verbal expression.
 - a. 2 more than the quotient of a number and 5
 - **b.** 1 less than twice the square of a number

7. Solve each equation.

a.
$$14 = 8 - 6r$$

b.
$$-1.6b + 5 = -7.8$$

c.
$$5(6-4w)-w+21$$

d.
$$6y - 5 = -3(2y + 1)$$

8. Solve each equation or formula for the specified variable.

a.
$$E = mc^2$$
 for m

b.
$$c = \frac{2d+1}{3}$$
 for d.

c.
$$h = vt - gt^2$$
 for v

9. Evaluate each expression if a = (-1), $b = (_8)$, c = 5, and d = (-1.4).

a.
$$-6|10a - 12|$$

b.
$$|2b-1|-|-8b+5|$$

10. Solve each equation. Check your solutions.

a.
$$|n-4|=13$$

b.
$$-3|4x - 9| = 24$$

c.
$$5 - 3|2 + 2w| = -7$$

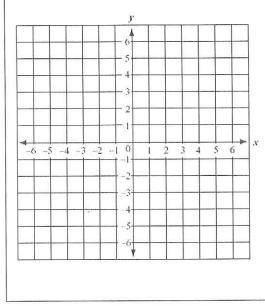
11. Solve each inequality. Graph your solution on a number line.

a.
$$8x - 6 \ge 10$$

b.
$$-3(4w - 1) > 18$$

c.
$$-10 < 3x + 2 \le 14$$

d.
$$5k + 2 < -13$$
 or $8k - 1 > 19$


e.
$$|y+5| < 2$$

f.
$$|x - 8| \ge 3$$

Chapter 2 Test Review Algebra 2

1) Use the relation {(-5,1),(2,4),(1,-4)} to answer the following

a) Graph the relation:

- b) Identify the Domain:
- d) Is the relation a function? Explain.

- c) Identify the Range:
- e) Is this continuous or discrete?

2) Find each function value.

a)
$$f(-3)$$
if $f(x) = \frac{x^2 - 4}{x + 7}$

b) g(3a) if g(x) =
$$x^2 - 4x - 2$$

3) Identify which equations are linear. If they are not linear, explain why.

a)
$$f(x) = \frac{5}{x+6}$$

b)
$$y^2 = 3x + 1$$

c)
$$x = 10$$

d)
$$y = \frac{3}{5}x - 6$$

4) What is the x-intercept and y-intercept of the graph of 2x - 8y = 16?

a) x-intercept = _____

b) y-intercept = _____

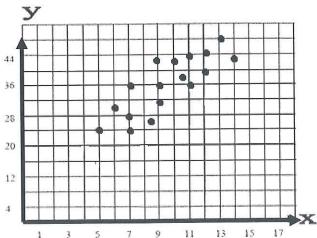
5) Graph the line that satisfies each set of conditions.

a) Passes through (1,2) and parallel to the line 4y = -2x + 5

b) Passes through (-2,3) and perpendicular to the graph of x + y = 10

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x

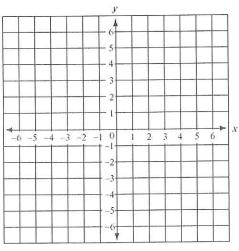
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

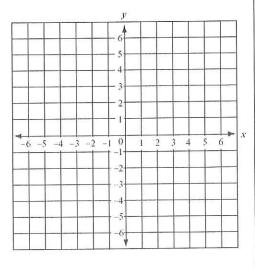

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

6) Write an equation for the line that satisfies each requirement in Slope-Intercept Form.

a) Passes through (1,-4) and (3,7)

b) Passes through (4,0) and perpendicular to the line of x + 4y = -4

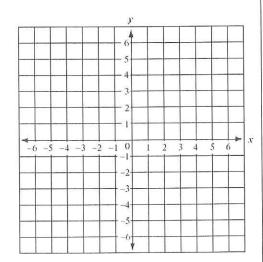

7) Use the scatter plot below to answer the following questions.


- a) Draw a line of best fit (use a straight edge!!!!)
- c) Does the graph indicate a positive correlation, negative correlation or no correlation between the domain and range?
- b) Write a prediction equation (be sure to identify which two point you use).
- d) Make a prediction for y if the x-value is 20.

8) Graph the following equations or inequalities. Label the domain and range. Be sure to shade the appropriate areas when necessary.

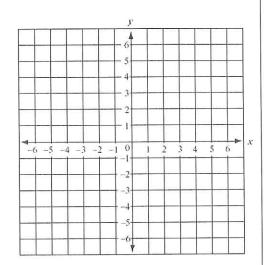
a)
$$y \ge -\frac{5}{4}x + 3$$

b)
$$y < |x| + 4$$



Domain: Range:_____ Domain

Domain: Range:_____

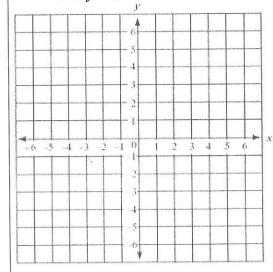

c)
$$f(x) = [x] - 2$$

Domain:

Range:

d)
$$g(x) = \begin{cases} -x - 1, & x < 1 \\ x + 1, & x \ge 1 \end{cases}$$

Domain:	Range:
Domain	


Name:	Name:	Date:	Hour:
-------	-------	-------	-------

Algebra 2 Chapter 3 PRACTICE Test

Solve the systems using the method given. Then state whether the solution is consistent and independent, consistent and dependent or inconsistent.

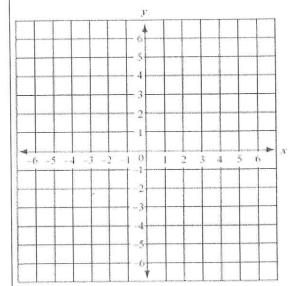
Solve the System by Graphing.

$$\begin{array}{ccc}
1) & 2x - 4y = 8 \\
x + y = 2
\end{array}$$

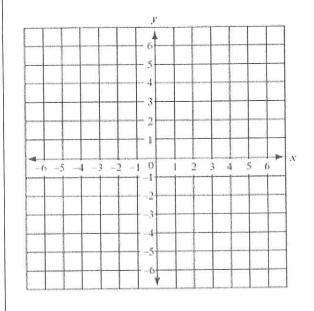
Solve the System by Substitution

$$2) 4x - y = 10
y - 3x = -6$$

Solve the System by Elimination

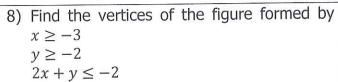

3)
$$5x + 2y = 1$$

 $2x + 3y = 7$


Solve the System of Equations

4)
$$5x - 3y = 16$$

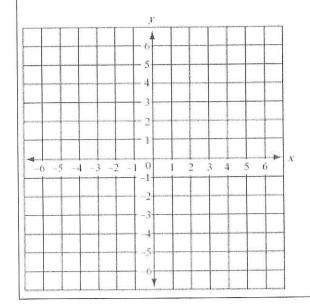
 $2x + 7y = -10$

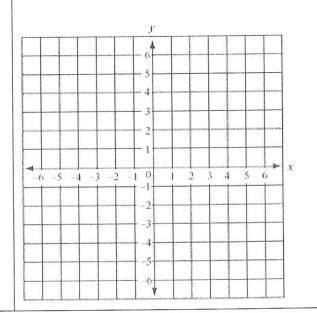

5)
$$2x - 3y \ge -3$$

 $3y > -2x - 6$

6)
$$|y| < 4$$

 $y < x + 2$





7)
$$x + y \ge -3$$

 $x - 2y \le 4$

43

9)	A printing company sells small packages of personalized stationary for \$7 each, medium
	packages for \$12 each, and large packages for \$15 each. Yesterday, the company sold 9
	packages of stationary, collecting a total of \$86. Three times as many medium packages were
	sold as large packages. Write a system of three equations that represents the number of
	packages sold. Find the number of packages sold.

10) Solve the system of equations. x + 2y - 3z = 5 x - y + 2z = -3

$$x + 2y - 3z = 5$$

$$x - y + 2z = -3$$

$$x + y - z = 2$$

Algebra 2 Chapter 4 Test Review

Solve each equation.

$$1. \ \begin{bmatrix} x+y \\ 4x-3y \end{bmatrix} = \begin{bmatrix} 1 \\ 11 \end{bmatrix}$$

2.
$$-2\begin{bmatrix} w+5 & x-z \\ 3y & 8 \end{bmatrix} = \begin{bmatrix} -16 & -4 \\ 6 & 2x+8z \end{bmatrix}$$

Perform the indicated matrix operations.

3.
$$\begin{bmatrix} 3 & 5 \\ -7 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 6 \\ 8 & -1 \end{bmatrix}$$

4.
$$\begin{bmatrix} 0 & -1 & 3 \end{bmatrix} + \begin{bmatrix} 5 \\ -2 \\ -3 \end{bmatrix}$$

5.
$$5\begin{bmatrix} 6 & -2 \\ 5 & 4 \end{bmatrix} - 2\begin{bmatrix} 6 & -2 \\ 5 & 4 \end{bmatrix} + 4\begin{bmatrix} 7 & -6 \\ -4 & 2 \end{bmatrix}$$

6.
$$1.3 \begin{bmatrix} 3.7 \\ -5.4 \end{bmatrix} + 4.1 \begin{bmatrix} 6.4 \\ -3.7 \end{bmatrix} - 6.2 \begin{bmatrix} -0.8 \\ 7.4 \end{bmatrix}$$

Use matrices A, B, C, D, and E to find the following:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, C = \begin{bmatrix} 2 & -2 \\ -3 & 3 \end{bmatrix}, D = \begin{bmatrix} -2 & 2 \\ 3 & -3 \end{bmatrix}, E = \begin{bmatrix} 5 & -3 \\ -2 & 4 \end{bmatrix}$$

7. A + B

9. C + D

11. 4B

8. E + 2A

10. 2A + 3E - D

Find each product, if possible.

12.
$$\begin{bmatrix} -3 & 4 \end{bmatrix} * \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

14.
$$\begin{bmatrix} 5 & 2 \\ 4 & -5 \end{bmatrix} * \begin{bmatrix} 5 & 10 \\ 15 & 20 \end{bmatrix}$$

13.
$$\begin{bmatrix} 5 & 10 \\ 15 & 20 \end{bmatrix} * \begin{bmatrix} -1 & 2 \\ 7 & 10 \\ -5 & 0 \end{bmatrix}$$

15.
$$\begin{bmatrix} 5 & 1 & -8 \\ 4 & -2 & 11 \end{bmatrix} * \begin{bmatrix} -1 & 2 \\ 7 & 10 \\ -5 & 0 \end{bmatrix}$$

16. State the dimensions of each matrix.

a.
$$\begin{bmatrix} 4 & -1 & 0 \\ -3 & 6 & 2 \end{bmatrix}$$

b.
$$\begin{bmatrix} 6 \\ -3 \\ 2 \end{bmatrix}$$

b.
$$\begin{bmatrix} 6 \\ -3 \\ 2 \end{bmatrix}$$
 c. $\begin{bmatrix} x - 2y \\ 3x - 4y \end{bmatrix}$

For each of the following, calculate the determinant.

17.
$$\begin{vmatrix} 8 & -5 \\ -6 & 4 \end{vmatrix}$$

18.
$$\begin{vmatrix} 10 & 3 \\ 5 & -2 \end{vmatrix}$$

Calculate the determinant using expansion of minors.

19.
$$\begin{vmatrix} 2 & -3 & 5 \\ 1 & -2 & -7 \\ -1 & 4 & -3 \end{vmatrix}$$

20.
$$\begin{vmatrix} 4 & 3 & -2 \\ 2 & 5 & -8 \\ 6 & 4 & 1 \end{vmatrix}$$

Calculate the determinant using diagonals.

21.
$$\begin{vmatrix} 6 & 12 & 15 \\ 9 & 3 & 14 \\ 5 & 6 & 3 \end{vmatrix}$$

Use Cramer's Rule to solve each system of equations.

22.
$$-x + y = 5$$

 $2x + 4y = 38$

23.
$$2a + b - c = -6$$

 $a - 2b + c = 8$
 $-a - 3b + 2c = 14$

Determine whether each pair of matrices are inverses.

24.
$$A = \begin{bmatrix} -7 & -6 \\ 8 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} -7 & -6 \\ 8 & 7 \end{bmatrix}$

25.
$$C = \begin{bmatrix} -3 & 4 \\ 2 & -2 \end{bmatrix}$$
 and $D = \begin{bmatrix} -2 & -2 \\ -4 & -3 \end{bmatrix}$

Find the inverse of each matrix, if it exists.

26.
$$\begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$

27.
$$\begin{bmatrix} 10 & 3 \\ 5 & -2 \end{bmatrix}$$

28.
$$\begin{bmatrix} 3 & -6 \\ 2 & -4 \end{bmatrix}$$