2-2

Practice

Linear Equations

State whether each equation or function is linear. Write yes or no. If no, explain your reasoning.

1.
$$h(x) = 23$$

2.
$$y = \frac{2}{3}x$$

3.
$$y = \frac{5}{x}$$

4.
$$9 - 5xy = 2$$

Write each equation in standard form. Identify A, B, and C.

5.
$$y = 7x - 5$$

6.
$$y = \frac{3}{8}x + 5$$

7.
$$3y - 5 = 0$$

$$8. x = -\frac{2}{7}y + \frac{3}{4}$$

Find the x-intercept and the y-intercept of the graph of each equation. Then graph the equation.

9.
$$y = 2x + 4$$

10.
$$2x + 7y = 14$$

11.
$$y = -2x - 4$$

12.
$$6x + 2y = 6$$

13. MEASURE The equation y = 2.54x gives the length in centimeters corresponding to a length x in inches. What is the length in centimeters of a 1-foot ruler?

LONG DISTANCE For Exercises 14 and 15, use the following information.

For Meg's long-distance calling plan, the monthly cost C in dollars is given by the linear function C(t) = 6 + 0.05t, where t is the number of minutes talked.

- 14. What is the total cost of talking 8 hours? of talking 20 hours?
- 15. What is the effective cost per minute (the total cost divided by the number of minutes talked) of talking 8 hours? of talking 20 hours?

Lesson 2-2

2-2

Word Problem Practice

Linear Equations

1. WORK RATE The linear equation n = 10t describes n, the number of origami boxes that Holly can fold in t hours. How many boxes can Holly fold in 3 hours?

2. BASKETBALL Tony tossed a basketball. Below is a graph showing the height of the basketball as a function of time. Is this the graph of a linear function? Explain.

3. PROFIT Paul charges people \$25 to test the air quality in their homes. The device he uses to test air quality cost him \$500. Write an equation that describes Paul's net profit as a function of the number of clients he gets. How many clients does he need to break even?

4. RAMP A ramp is described by the equation 5x + 7y = 35. What is the area of the shaded region?

SWIMMING POOL For Exercises 5-7, use the following information.

A swimming pool is shaped as shown below. The total perimeter is 110 feet.

- **5.** Write an equation that relates x and y.
- **6.** Write the linear equation from Exercise 5 in standard form.
- 7. Graph the equation.

