Practice

Logarithmic Functions

Write each equation in exponential form.

$$1.\log_3 81 = 4$$

2.
$$\log_8 2 = \frac{1}{3}$$

3.
$$\log_{10} \frac{1}{100} = -2$$

Write each equation in logarithmic form.

4.
$$3^3 = 27$$

5.
$$5^{-3} = \frac{1}{125}$$

6.
$$\left(\frac{1}{4}\right)^{-4} = 256$$

Evaluate each expression.

7.
$$\log_7 7^3$$

10.
$$\log_4 32$$

12.
$$\log_6 \frac{1}{216}$$

Solve each equation.

13.
$$\log_x 64 = 3$$

14.
$$\log_4 0.25 = x$$

15.
$$\log_4 (2x - 1) = \log_4 16$$

16.
$$\log_{10} \sqrt{10} = x$$

17.
$$\log_7 56 - \log_7 x = \log_7 4$$

17.
$$\log_7 56 - \log_7 x = \log_7 4$$
 18. $\log_5 (x+4) + \log_5 x = \log_5 12$

19. Chemistry How long would it take 100,000 grams of radioactive iodine, which has a half-life of 60 days, to decay to 25,000 grams? Use the formula $N=N_0\left(\frac{1}{2}\right)^t$, where N is the final amount of the substance, N_0 is the initial amount, and t represents the number of half-lives.